Synthesis of Fennel Extract-Based Nanoparticles (AgNPs) Using Proteomics as Larvicide for Aedes Aegypti Mosquitoes

  • Rafa Athalia Maritza SMAN 1 BAWANG KAB BANJARNEGARA JAWA TENGAH
  • Isnaini Nursalsabila Gozali SMAN 1 BAWANG KAB BANJARNEGARA JAWA TENGAH
Keywords: Aedes Aegypti Larvae, Adas Pagar Essential Oil, Silver Nanoparticles (AgNPs)

Abstract

Dengue Hemorrhagic Fever (DHF) remains a major public health problem in Indonesia due to the high population of Aedes aegypti mosquitoes. Chemical-based larval control poses risks of resistance development and environmental impacts; therefore, effective and environmentally friendly natural larvicides are urgently needed. This study aimed to analyze the potential of silver nanoparticles (AgNPs) synthesized using essential oil extract of adas pagar (Eupatorium capillifolium) as a larvicide against Aedes aegypti through a proteomic approach. This research employed a laboratory experimental design using third-instar Aedes aegypti larvae as samples. Data were obtained through GC-MS, FTIR, PSA, larvicidal assays, BSLT toxicity tests, in silico analysis, and proteomic analysis, conducted from May to October 2025. Data analysis was performed using logarithmic regression to determine LC₅₀ values and one-way ANOVA. The results demonstrated that adas pagar essential oil-based AgNPs exhibited high larvicidal activity with an LC₅₀ value of 0.08091 µg/mL and caused significant disruption to metabolic and cellular defense proteins in larvae. In conclusion, adas pagar-based AgNPs have strong potential to be developed as an effective natural larvicide, with further in vivo studies and applicative formulation development recommended.

Downloads

Download data is not yet available.

References

World Health Organization. Dengue and severe dengue. WHO; 2024. Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue

Wilder-Smith A, Ooi EE, Horstick O, Wills B. Dengue. Lancet. 2019;393(10169):350–363. Available from: https://www.sciencedirect.com/science/article/pii/S014067361832497X

Brady OJ, et al. Vector ecology and dengue transmission. PLoS Negl Trop Dis. 2015;9(4):e0003565. Available from: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0003565

Guzman MG, Harris E. Dengue. Lancet. 2015;385(9966):453–465. Available from: https://www.sciencedirect.com/science/article/pii/S0140673614600807

Stanaway JD, et al. The global burden of dengue. Lancet Infect Dis. 2016;16(6):712–723. Available from: https://www.sciencedirect.com/science/article/pii/S1473309916000268

Hairil A, Eko MS. Faktor risiko kejadian Demam Berdarah Dengue (DBD) di Indonesia. Media Publikasi Promosi Kesehatan Indonesia. 2019. Available from: https://journal.unnes.ac.id/sju/index.php/mppki/article/view/30342

Muhammad HA, Dewi R, Hardi W. Implementasi kebijakan penanggulangan DBD di Indonesia. Journal of Public Policy and Management Review. 2023. Available from: https://ejournal3.undip.ac.id/index.php/jppmr/article/view/36571

Machmudi MI. Ditemukan 10.752 kasus DBD sampai Februari 2025. MetroTV; 2025. Available from: https://www.metrotvnews.com/read/k8oCVw32-ditemukan-10-752-kasus-dbd-sampai-februari-2025

Dinas Kesehatan Provinsi Jawa Tengah. Tren kasus DBD di Jawa Tengah. 2023. Available from: https://jatengprov.go.id/publik/tren-kasus-dbd-di-jateng-menurun-dinkes-minta-warga-waspada-saat-pancaroba/

Benelli G. Plant-based larvicides against mosquito vectors. Parasitol Res. 2015;114:3201–3212. Available from: https://link.springer.com/article/10.1007/s00436-015-4555-6

Pavela R. Essential oils for mosquito larval control. Industrial Crops and Products. 2016;76:174–187. Available from: https://www.sciencedirect.com/science/article/pii/S0926669015303624

Ga’al H, Fouad H, Mao G, Tian J, Mo J. Larvicidal activity of silver nanoparticles synthesized using plant essential oils. J Asia Pac Entomol. 2018;21(3):844–852. Available from: https://www.sciencedirect.com/science/article/pii/S1226861518300797

Nantipat C, et al. Proteomic response of Aedes aegypti larvae to silver nanoparticles. Insects. 2022;13(4):342. Available from: https://www.mdpi.com/2075-4450/13/4/342

Widawati, M., & Yuliasih, Y. (2017). Aktivitas Larvasida Berbagai Pelarut pada Ekstrak Biji Kayu Besi Pantai (Pongamia. BALABA, 8.

Sekar, L., & Kumari, S. (2021). A Review on Nanoparticles: Structure, Classification, Synthesis & Applications. Journal of Scientific Research, 5.

Calvo-Fernandez, A., Alonso-Lerma, B., Schönfelder, J., Franco, D., Muñoz-Ortega, Casares, S., . . . Jimenez- Perez, R. (2023). High-Throughput Virtual Search Of Small Molecules For Controlling The Mechanical Stability Of Human CD4. ASBMB, 11.

Benelli G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res. 2015;114(9):3201–3223.

Pavela R. Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crops Prod. 2016;76:174–187.

Ga’al, H., Fouad, H., Mao, G., Tian, J., & Mo, J. (2018). Larvicidal and Pupicidal Evaluation Of Silver Nanoparticles Synthesized Using Aquilaria Sinensis and Pogostemon Cablin Essential Oils Against Dengue and Zikaviruses Vector Aedes Albopictus Mosquito and Its Histopathological Analysis. Taylor & Francis, 9.

Nantipat, C., Sutticha, N.-R., Thammasittirong, Sittiruk, R., Sucheewin, K., & Anon, T. (2022). Proteomic Response of Aedes aegypti Larvae to Silver/Silver Chloride Nanoparticles Synthesized Using Bacillus Thuringiensis Subsp. Israelensis Metabolites. Jurnal of MDPI, 14.

Published
2026-02-28
How to Cite
Rafa Athalia Maritza, & Isnaini Nursalsabila Gozali. (2026). Synthesis of Fennel Extract-Based Nanoparticles (AgNPs) Using Proteomics as Larvicide for Aedes Aegypti Mosquitoes. Jurnal Kesehatan Cendikia Jenius , 3(2), 263-270. https://doi.org/10.70920/jenius.v3i2.365
Section
Articles